The polymerase slips and PIPO exists.
نویسنده
چکیده
Plant viruses that contain plus-sensed single-stranded RNA genomes are highly abundant in nature. As the equivalents of large mRNAs, these viral genomes utilize a wide variety of gene expression strategies for the production of their encoded proteins. The potyviruses, which are among the most agriculturally important members in this category, contain a single large open reading frame (ORF) coding for a polyprotein that is processed into functional units. For many years, the products derived from the full-length polyprotein were thought to be the only functional viral proteins. However, this notion was dispelled when an additional essential viral ORF, PIPO, was discovered encoded in an alternative reading frame. Since then, the PIPO protein— P3N-PIPO, which mediates virus movement in plants—has been intensively studied, but its mode of expression remained elusive until now. Two articles, one in this issue of EMBO Reports, now report that slippage of the viral polymerase during viral genome replication is responsible for shifting PIPO into a translated reading frame, thereby allowing for production of P3N-PIPO [1,2]. This mechanism of gene expression represents a novel strategy for plant viruses.
منابع مشابه
Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses.
RNA viruses use various strategies to condense their genetic information into small genomes. Potyviruses not only use the polyprotein strategy, but also embed an open reading frame, pipo, in the P3 cistron in the -1 reading frame. PIPO is expressed as a fusion protein with the N-terminal half of P3 (P3N-PIPO) via transcriptional slippage of viral RNA-dependent RNA polymerase (RdRp). We herein s...
متن کاملA novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing
The single-stranded, positive-sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted t...
متن کاملTranscriptional slippage in the positive-sense RNA virus family Potyviridae
The family Potyviridae encompasses ~30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N-PIPO, which is essential for virus cell-to-cell movement. However, the frameshift expression mechanism ...
متن کاملAn overlapping essential gene in the Potyviridae.
The family Potyviridae includes >30% of known plant virus species, many of which are of great agricultural significance. These viruses have a positive sense RNA genome that is approximately 10 kb long and contains a single long ORF. The ORF is translated into a large polyprotein, which is cleaved into approximately 10 mature proteins. We report the discovery of a short ORF embedded within the P...
متن کاملInteraction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement
A small open reading frame (ORF), pipo, overlaps with the P3 coding region of the potyviral polyprotein ORF. Previous evidence suggested a requirement for pipo for efficient viral cell-to-cell movement. Here, we provide immunoblotting evidence that the protein PIPO is expressed as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO (P3N-PIPO). P3N-PIPO of Turnip mosa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2015